首页> 外文OA文献 >Phonon-limited resistivity of graphene by first-principles calculations: Electron-phonon interactions, strain-induced gauge field, and Boltzmann equation
【2h】

Phonon-limited resistivity of graphene by first-principles calculations: Electron-phonon interactions, strain-induced gauge field, and Boltzmann equation

机译:通过第一性原理计算得到的石墨烯的声子极限电阻率:电子-声子相互作用,应变感应应变场和玻尔兹曼方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We use first-principles calculations, at the density-functional-theory (DFT) and GW levels, to study both the electron-phonon interaction for acoustic phonons and the "synthetic" vector potential induced by a strain deformation (responsible for an effective magnetic field in case of a nonuniform strain). In particular, the interactions between electrons and acoustic phonon modes, the so-called gauge-field and deformation potential, are calculated at the DFT level in the framework of linear response. The zero-momentum limit of acoustic phonons is interpreted as a strain of the crystal unit cell, allowing the calculation of the acoustic gauge-field parameter (synthetic vector potential) within the GW approximation as well. We find that using an accurate model for the polarizations of the acoustic phonon modes is crucial to obtain correct numerical results. Similarly, in the presence of a strain deformation, the relaxation of atomic internal coordinates cannot be neglected. The role of electronic screening on the electron-phonon matrix elements is carefully investigated. We then solve the Boltzmann equation semianalytically in graphene, including both acoustic and optical phonon scattering. We show that, in the Bloch-Gruneisen and equipartition regimes, the electronic transport is mainly ruled by the unscreened acoustic gauge field, while the contribution due to the deformation potential is negligible and strongly screened. We show that the contribution of acoustic phonons to resistivity is doping and substrate independent, in agreement with experimental observations. The first-principles calculations, even at the GW level, underestimate this contribution to resistivity by approximate to 30%. At high temperature (T > 270 K), the calculated resistivity underestimates the experimental one more severely, the underestimation being larger at lower doping. We show that, besides remote phonon scattering, a possible explanation for this disagreement is the electron-electron interaction that strongly renormalizes the coupling to intrinsic optical-phonon modes. Finally, after discussing the validity of the Matthiessen rule in graphene, we derive simplified forms of the Boltzmann equation in the presence of impurities and in a restricted range of temperatures. These simplified analytical solutions allow us the extract the coupling to acoustic phonons, related to the strain-induced synthetic vector potential, directly from experimental data.
机译:我们在密度泛函理论(DFT)和GW级别使用第一性原理计算来研究声子的电子与声子相互作用以及应变变形引起的“合成”矢量势(负责有效的磁应变不均匀的情况下)。特别是,在线性响应的框架内,在DFT级别上计算了电子与声子声子模式之间的相互作用,即所谓的规范场和形变势。声子的零动量极限被解释为晶体晶胞的应变,从而允许在GW近似内计算声表场参数(合成矢量电势)。我们发现,对于声子声子模式的极化使用准确的模型对于获得正确的数值结果至关重要。类似地,在应变变形的情况下,不能忽略原子内部坐标的弛豫。仔细研究了电子筛选对电子-声子矩阵元素的作用。然后,我们在石墨烯中半解析求解Boltzmann方程,包括声子和光学声子散射。我们表明,在布洛赫-格鲁尼森和均分制度下,电子传输主要由未屏蔽的声规范场支配,而由形变势所引起的贡献可忽略不计且受到严格屏蔽。我们表明,声子对电阻率的贡献是掺杂和衬底无关,与实验观察一致。第一性原理计算,即使在GW级,也低估了对电阻率的贡献约30%。在高温(T> 270 K)下,计算出的电阻率会严重低估实验值,在较低的掺杂量下,该低估值会更大。我们表明,除了远程声子散射以外,对此分歧的可能解释是电子-电子相互作用,该相互作用强烈地使与固有光子-声子模式的耦合正常化。最后,在讨论了Matthiessen规则在石墨烯中的有效性之后,我们推导了在存在杂质和温度受限的情况下Boltzmann方程的简化形式。这些简化的分析解决方案使我们可以直接从实验数据中提取与应变诱导的合成矢量势有关的声子耦合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号